Lesson = 3 [ Trigonometric Functions ] Important Questions

 

Q.1. Prove that cos 510° cos 330° + sin 390° cos 120° = –1.


Q.2. Find the maximum and minimum value of 7 cos x + 24 sin x.


Q.3. Find the value of √3 cosec 20° – sec 20°.


Q.4. Show that tan 3x tan 2x tan x = tan 3x – tan 2x – tan x.


Q.5. Solve sec x. cos 5x + 1 = 0


Q.6. Prove that : cos A cos 2A cos 4A cos 8A = sin16A / 16.sinA  . 


Q.7. If Î± and Î² are the solution of the equation a tanÓ¨ + b secÓ¨ = c then show that tan ( Î± + Î² ) = 2ac / a² - c².  


Q.8. If sin ( Ó¨ + Î± ) = a  and sin (  Ó¨ + Î² ) = b then prove that cos 2( Î± - Î² ) - 4ab cos ( Î± - Î² ) = 1-2a² - 2b².


Q.9. sin x  - 3sin 2x  + sin 3x =  cos x - 3cos 2x +cos 3x.


Q.10. Cos² x + Cos² ( x + Ï€/3 ) + Cos² ( x - Ï€/3 ) = 3/2.

 

Q.11. Solve 2tan²  x + sec² x = 2.


Q.12. If sec x=  2 and  3Ï€/2 < x < 2Ï€ find the value of 1 – tan x  – cosec x / 1 – cot x -  cosec x.


Q.13. Prove that sin 10° sin 30° sin 50° sin 70° = 1 /16 . 


Q.14. Prove that tan 13x = tan 4x + tan 9x + tan 4x tan 9x tan 13x.


Q.15. Prove that tan 70° = tan 20° + 2 tan 50°


Q.16. Show that 2 sinβ + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α  

cos 10° + cos 110° + cos 130° = 0.


Q.17. Find the value of tan 225° cot 405° + tan 765° cot 675°.


Q.18. tan 560 =   


Q.19. Find the value of tan Ï€/8 .


Q.20. Prove that Cos 6x= 32 Cos6x – 48 Cos4 x + 18 Cos2 x-1


Lesson =1 [ Sets ] Important Questions

Q.21. Prove that Sin 2x - Sin 4x + Sin 6x = 0


Q.22. Prove that tan 4x = 4 tan x ( 1 - tan² x ) / 1 - 6 tan² x + tan⁴ x.


Q.23. Prove that (Cos x + Cos y)2 + (Sin x – Sin y)2 = 4 Cos2 ( X + Y / 2 ).


Q.24. Prove that Sin x + Sin 3x + Sin 5x + Sin 7x = 4 Cos x. Cos 2x. Sin 4x.


Q.25. Prove that Cot 4x (Sin 5x + Sin 3x) = Cot x (Sin 5x – Sin 3x).


Q.26. Find the general solution of sin2x + sin4x + sin6x = 0.


Q.27. If Sin Î± + Sin Î² = a and Cos Î± + Cos Î² = b show that Cos (α + Î²) = b² - a² / b² + a² .


Q.28. Prove that Cos Î± + Cos Î² + Cos Î³ + Cos (α + Î² + Î³) = 4 cos ( Î± + Î² / 2 ) . cos ( Î² + Î³ / 2 ) . cos ( Î³ + Î± / 2 ).

 

Q.29. Prove that 


Q.30. Prove that 


Q.31. Prove that Cos 200. Cos 400. Cos 60Cos 800 = 1 / 16.


Q.32. If cos (α + ) =4/5 and sin (α- )=5/13 , where α lie between 0 and Ï€/4, then find the value of tan 2α.


Q.33. If sin A = 513, Ï€ < A < 3Ï€2 and cos B = 353Ï€2 < B < 2Ï€, find cos (A – B).


Q.34. Prove that (sin Î¸ + sec Î¸)2 + (cos Î¸  + cosec Î¸)2 = (1 + cosec Î¸ sec Î¸)2



Q.35. Prove that cosA + cosB - cosC = 4 cosA2 cosB2 sin C2 – 1



Q.36. Prove that tan(45 + x) = sec 2x + tan 2x.




Q.37. Prove that tan 2x tan x / tan 2x - tan x = sin 2x.



Q.38.sin ( x+y) - 2sin x + sin ( x-y ) / cos ( x+y ) - 2cos x + cos ( x-y ) = tan x.


Q.39. cos 10° + cos 110° + cos 130° = 0.

 

Q.40. tan Î±. tan ( 60°Î± ). tan ( 60° + Î± ) = tan 3α. 

Post a Comment

0 Comments